Additives to Increase Fuel Heat Sink Capacity

41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference

James Nabity

Dr. David T. Wickham, P.I.

Bradley D. Hitch

Jeffrey R. Engel

Sean Rooney

July 11, 2005

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE JUL 2005		2. REPORT TYPE		3. DATES COVERED 00-00-2005 to 00-00-2005	
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER			
Additives to Increase Fuel Heat Sink Capacity				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) TDA Research Inc,12345 West 52nd Avenue,Wheat Ridge,CO,80033-1916				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited			
13. SUPPLEMENTARY NO The original docum	otes nent contains color i	images.			
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ADSTRACT	36	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Overview

- Application of endothermic fuels.
- Initiated thermal cracking reactions.
- Results of laboratory experiments to measure initiated heat sink capacity.
- Results obtained with pilot scale fuel/air heat exchanger.

NASA Application for Endothermic Fuels

- Improve commercial access to space.
 - Current cost is about \$10,000 per pound.
 - Goal is to reduce cost to \$100 per pound.
- Cost reductions will require:
 - Single stage to orbit (SSTO) vehicles.
 - Rocket-based combined cycle (RBCC) engines using hydrocarbon fuel.
- At speeds between Mach 5 and 10, heat loads exceed cooling available from sensible heating of the fuel.
- Thermal cracking reactions may provide the additional heat sink capacity.

Applications of Endothermic Fuel Cooling

Thermal Cracking Reactions

Heptane cracking.

$$C_7H_{16} \longrightarrow CH_4 + C_2H_4 + C_2H_6 + C_3H_6 + C_3H_8 + ...$$
 $\Delta H \approx +400 \text{ Btu/lb}$

Proceeds by a free radical mechanism.

Initiation - slow step

$$C_7H_{16} \rightarrow C_7H_{15} \cdot + H \cdot$$

Ethylene formation by β scission - fast

$$C_7H_{15} \bullet \to C_2H_4 + C_5H_{11} \bullet$$

Chain propagation - fast

$$C_7H_{16} + CH_3 \rightarrow C_7H_{15} + CH_4$$

 The overall rate is limited by the initiation step, which is slow at working temperatures.

Addition of Chemical Initiator

 Increases the rate of radical generation because the R-R bond is weaker than the C-H bond.

$$R-R_1 \rightarrow R \bullet + R_1 \bullet$$

R• and R₁• then react with the fuel.

$$R \bullet + C_7 H_{16} \rightarrow C_7 H_{15} \bullet + R-H$$

- The rest of the process is identical to the mechanism without the initiator.
 - The chemical initiator only starts the reaction it has no effect on reaction stoichiometry.
- Low concentrations required (less than 3 wt%).

Characteristics of the TDA Initiator

- Consists of carbon, hydrogen, and oxygen.
- Is soluble in normal paraffin fuels.
- Is stable in its concentrated form at ambient temperatures.
- It is not a highly toxic chemical.

Previous Results with n-Heptane

Objective of Current Project

- Measure heat sink capacity of real fuels such as JP-7 with and without initiator.
- Use kinetic data to design and construct a pilot scale heat exchanger and demonstrate initiator under realistic heat flux.

Laboratory Apparatus

Test Section Used Annular Fuel Flow Path

Test Section Installed in a Vacuum Chamber to Reduce Convective Losses

Power Measurement

Measurements were made at 1000 Hz with a digital oscilloscope

Significant Power Increase with Initiator Addition

The Initiator Improves the Heat Sink Capacity of JP-7

Substantial Increases in *n*-Decane Heat Sink Capacity

The Initiator is Very Effective with a Mixture of Normal Paraffins

Cyclohexane is Thermally Stable without Initiator

The Initiator Reduces the Activation Energy of the Cracking Reaction

Kinetic Data for JP-7

Design and Construct Pilot Scale Air/Fuel Heat Exchanger

- Demonstrate heat sink capacity under realistic conditions.
- Heat flux of approximately 100,000 Btu/ft² h.
- $T_{air in} = 780$ °C, $T_{air out} = 350$ °C
- $T_{\text{fuel in}} = 65^{\circ}\text{C}$, $T_{\text{fuel out}} = 450^{\circ}\text{C}$

Schematic of Ethylene Burner and the Heat Exchanger

Finned Inconel Tubing for Fuel

32 feet total finned tubing length
25.5 in overall unit length
3 in coil diameter
41 total wraps
~9.4 in length per wrap

Kinetic Model Used to Predict Cracking Level

Addition of Initiator Increases the Fuel Cracking Reaction

Installed in Test Rig

We Measured Non Condensable

Pilot Scale Rig in Operation

Initiator Causes an Increase in the Fuel Heat Sink Capacity

Initiator Produces Significant Increase In Non Condensable Flow

Model for JP-7 Fits the Data Well

Initiated Cracking Adds Substantial Heat Sink Capacity for *n*-Decane

The Initiator Can Reduce the HX Temperature

Coke Deposition Rates are a Strong Function of Temperature

Summary

- The TDA initiator produces significant increases in the fuel heat sink capacities of JP-7 and model fuel compounds.
- The initiator reduces the activation energy for the thermal cracking reaction.
- We demonstrated the effectivness of the initiator in a fuel/air heat exchanger that operated at realistic heat flux.
- The initiator reduces the HX temperature, which could substantially reduce coke deposition.

Acknowledgements

- Funding provided by NASA SBIR Program, contract number NAS3-01039.
- Diane Linne, Contract Monitor.
- Air Force Research Laboratory for providing JP-7 fuel.

